## X(3051) (INTERSECTION X(2)X(6)∩X(32)X(184))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b2 + c2)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(3051) lies on these lines:
2,6    25,263    31,1911    32,184    42,1197    51,1196    99,703    110,251    213,2308    321,2235    511,1194    669,881    1078,1207    1180,2979    1627,1691

X(3051) = isogonal conjugate of X(308)
X(3051) = X(I)-Ceva conjugate of X(J) for these I,J: 6,39    110,669    694,237    1576,2531
X(3051) = X(2531)-cross conjugate of X(1576)
X(3051) = crosspoint of X(I) and X(J) for these I,J: 6,32    39,1843
X(3051) = crosssum of X(I) and X(J) for these I,J: 2,76    83,1799

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.