## X(3021) (5th STEVANOVIC POINT)

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c - a)[2a2 - a(b + c) + (b - c)2]2
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(3021) lies on the incircle and these lines:
1,1358    11,55    56,1292    354,1357    1317,2826    1361,2814    1362,2820    1364,2835    1682,3034    2775,3028    2788,3027    2795,3023    2809,3022    2836,3024

X(3021) = reflection of X(I) in X(J) for these I,J: 8,3039    1358,1
X(3021) = X(7)-Ceva conjugate of X(3008)
X(3021) = crosspoint of X(7) and X(3008)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.