## X(2715) (SR(X(99), X(112)))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b2 - c2)(b4 + c4 - a2b2 - a2c2)]       (M. Iliev, 5/13/07)

Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2715) lies on the circumcircle and these lines:
2,2857    3,2710    6,842    32,2698    58,2700    74,187    81,2856    98,230    99,249    103,1326    107,685    110,647    111,1495    112,512    232,1692    284,2708    287,2373    290,2367    476,2395    477,2549    511,1297    577,2706    691,2420    759,1910    827,1625    843,1384    879,935    933,2623    1304,2433    1333,2699    2193,2707    2407,2855

X(2715) = reflection of X(2710) in X(3)
X(2715) = isogonal conjugate of X(2799)
X(2715) = cevapoint of X(I) and X(J) for these I,J: 512,1692    523,2450    1976,2422
X(2715) = X(I)-cross conjugate of X(J) for these I,J: 512,2065    989,98    1691,249    2422,1976

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.