## X(2632) (DIFFERENCE OF PU(75))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(tan C - tan A) - 1/(tan B - tan A)
Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)2(b2 + c2 - a2)2       (M. Iliev, 5/13/07)

Barycentrics    (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(2632) lies on these lines:
1,162    48,2157    63,293    92,1956    122,1367    336,799    520,1364    1096,2184    2292,2658    2310,2611    2631,2634

X(2632) = X(1)-Ceva conjugate of X(652)
X(2632) = crosspoint of X(I) and X(J) for these (I,J): 1,656    2584,2585
X(2632) = crosssum of X(1) and X(162)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.