## X(2482) (STEINER-INELLIPSE-ANTIPODE OF X(115))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(2a2 - b2 - c2)2
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(2482) lies on the Steiner inscribed ellipse and these lines:
2,99    3,67    30,114    32,1992    39,597    187,524    351,690    530,619    531,618    538,1569    1086,1125

X(2482) = midpoint of X(2) and X(99)
X(2482) = reflection of X(I) in X(J) for these I,J: 2,620    115,2
X(2482) = complement of X(671)
X(2482) = complementary conjugate of X(625)
X(2482) = X(I)-Ceva conjugate of X(J) for these I,J: 2,524    88,690
X(2482) = crosspoint of X(2) and X(524)
X(2482) = crosssum of X(6) and X(111)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.