HJB --- GMA --- UFF


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1214)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2299) lies on these lines:
4,580    6,25    9,33    19,31    21,1039    24,581    27,162    28,34    29,270    42,2259    55,607    73,2360    112,2291    238,1848    284,2189    909,2206    1104,1829    1174,2356    1333,1436    1402,1945    1435,1471    1824,2161    1841,2160    1859,2361    1973,2258

X(2299) = X(I)-Ceva conjugate of X(J) for these I,J: 28,1474    29,284    270,1172    1172,2332    2189,2204
X(2299) = cevapoint of X(I) and X(J) for these I,J: 23,31    607,2212
X(2299) = X(I)-cross conjugate of X(J) for these I,J: 31,2194    607,1172    2204,1474    2212,2204
X(2299) = crosspoint of X(I) and X(J) for these I,J: 28,1172    270,2189
X(2299) = crosssum of X(72) and X(1214)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense

free counter