HJB --- GMA --- UFF


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(74)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2173) lies on these lines:
1,19    6,1406    36,1731    44,513    45,198    169,2267    662,1959    897,1910    1405,1454    1725,2159    1760,1958    1761,2287    1762,1817    1820,2155    2151,2153    2152,2154    2171,2174    2260,2264    2261,2270    2262,2317

X(2173) = isogonal conjugate of X(2349)
X(2173) = X(I)-Ceva conjugate of X(J) for these I,J: 2341,6    2349,1
X(2173) = crosspoint of X(I) and X(J) for these I,J: 1,2349    57,759    92,2166    2153,2154
X(2173) = crosssum of X(I) and X(J) for these I,J: 1,2173    9,758
X(2173) = X(2349)-aleph conjugate of X(2173)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense

free counter