## X(2170) (X(2)-ISOCONJUGATE OF X(59))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(59)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2170) = X(I)-Ceva conjugate of X(J) for these I,J: 1,663    6,661    9,650    11,2310    19,649    57,513    312,522    673,2254    1086,244    1751,656    2006,1769    2161,1635    2217,667

X(2170) = cevapoint of X(1) and X(1053)
X(2170) = crosspoint of X(I) and X(J) for these I,J: 1,514    9,650    11,1086    57,513    312,522    1022,1168    2590,2591

X(2170) = crosssum of X(I) and X(J) for these I,J: 1,101    9,100    57,651    59,1252    63,1813    78,644    109,604    214,1023    1331,2289

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.