## X(2161) (X(2)-ISOCONJUGATE OF X(36))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: tc.zip (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(36)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2161) lies on these lines:
1,2364    6,1411    9,80    19,53    37,101    44,517    45,55    57,1020    63,545    190,321    198,2164    484,2245    654,900    655,673    909,1319    910,2222    1150,12237    1400,1989    1436,2178    1635,1769    1824,2299    2259,2264

X(2161) = isogonal conjugate of X(3218)
X(2161) = X(2006)-Ceva conjugate of X(1411)
X(2161) = cevapoint of X(I) and X(J) for these I,J: 37,44    649,2087    1635,2170
X(2161) = X(I)-cross conjugate of X(J) for these I,J: 902,1    2183,6
X(2161) = crosspoint of X(I) and X(J) for these I,J: 80,2006    88,104
X(2161) = crosssum of X(I) and X(J) for these I,J: 36,2323    44,517    758,2245

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense