## X(2160) (X(2)-ISOCONJUGATE OF X(35))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(35)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2160) lies on these lines:
6,1406    9,46    19,1990    55,199    56,2164    65,2174    284,501    395,1081    396,554    909,2262    910,1174    1108,2291    1400,1989    1841,2299

X(2160) = isogonal conjugate of X(3219)
X(2160) = cevapoint of X(1652) and X(1653)
X(2160) = X(I)-cross conjugate of X(J) for these I,J: 2260,6    2308,1
X(2160) = crosspoint of X(57) ane X(267)
X(2160) = crosssum of X(9) and X(191)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.