## X(1994) (ORTHOCORRESPONDENT OF X(5))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b2c2 - 16(area(ABC))2]
Trilinears            cos 3A csc 2A : cos 3B csc 2B : cos 3C csc 2C ( M. Iliev, 4/12/07)

Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1994) lies on these lines:
2,6    3,1199    5,195    22,1351    23,184    49,143    51,110    52,54    94,275    97,216    186,568    427,1353    567,1154    1194,1570    1627,1692

X(1994) = isogonal conjugate of X(2963)
X(1994) = cevapoint of X(6) and X(195)
X(1994) = crosspoint of X(588) and X(589)
X(1994) = crosssum of X(590) and X(615)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.