## X(1974) (BARYCENTRIC PRODUCT OF PU(39))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4cos B cos C
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1974) lies on these lines:
4,83    6,25    24,511    32,682    34,1428    53,460    66,125    69,459    110,193    112,729    141,468    156,1353    235,1503    237,577    264,419    428,597    571,1576    981,1172    1147,1351    1386,1829    1395,1397

X(1974) = isogonal conjugate of X(305)
X(1974) = X(25)-Ceva conjugate of X(32)
X(1974) = crosspoint of X(1395) and X(1973)
X(1974) = crosssum of X(2) and X(1370)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.