## X(1936) (CROSSDIFFERENCE OF PU(15))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = cos2A - cos B cos C
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1936) lies on these lines:
1,3    2,212    4,255    11,238    20,603    29,270    31,497    33,63    47,1479    58,950    73,411    100,1818    109,516    225,412    243,1430    388,1496    495,738    511,1364    521,650    580,1210    750,1253    896,1776    908,1331    938,1451    1044,1406    1046,1858    1058,1497    1762,1859

X(1936) = isogonal conjugate of X(1937)
X(1936) = X(296)-Ceva conjugate of X(1935)
X(1936) = crosssum of X(I) and X(J) for these (I,J): (1,1758), (243,1940)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.