X(1812) (INVERSE MIMOSA TRANSFORM OF X(573))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: tc.zip (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (cos A)/(y + z),    x : y : z = X(573)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1812) lies on these lines:
2,6    21,60    48,63    58,997    72,1437    78,212    219,332    222,348    274,1231    280,285    306,1332    314,1172    662,1817    860,1330    1006,1092    1412,1708

X(1812) = isogonal conjugate of X(1880)
X(1812) = X(I)-Ceva conjugate of X(J) for these (I,J): (314,21), (332,1792)
X(1812) = cevapoint of X(I) and X(J) for these (I,J): (63,394), (78,219)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense