HJB --- GMA --- UFF


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = - (cos A)/x + (cos B)/y + (cos C)/z,    x : y : z = X(104)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1737) lies on these lines:
1,2    3,1837    4,46    5,65    11,517    12,942    29,1780    30,1155    35,950    36,80    40,1479    47,1724    56,355    57,1478    72,1329    91,225    109,1877    117,1845    119,912    150,1447    240,522    281,1723    354,495    381,1836    427,1905    484,516    579,1826    758,908    952,1319    1718,1870    1747,1890    1782,1842

X(1737) = midpoint of X(36) and X(80)
X(1737) = cevapoint of X(46) and X(1718)
X(1737) = X(2252)-cross conjugate of X(914)
X(1737) = crosssum of X(I) and X(J) for these (I,J): (6,2316), (31,2183)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense

free counter