HJB --- GMA --- UFF


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 cos(B - C) - cos A + cos B + cos C - 1
Barycentrics    (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(1699) lies on these lines:
1,4    2,165    5,40    10,962    11,57    12,1697    20,1125    36,1012    55,1538    79,84    80,1537    115,1572    118,1282    200,908    210,381    238,1754    354,971    355,546    382,1385    485,1702    486,1703    499,1770    610,1839    614,990    1329,1706    1348,1704    1506,1571    1676,1700    1677,1701    1730,1985    2009,2017    2010,2018

X(1699) = reflection of X(165) in X(2)
X(1699) = crosspoint of X(92) and X(1088)
X(1699) = crosssum of X(48) and X(1253)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense

free counter