## X(1479) ({X(1),X(4)}-HARMONIC CONJUGATE OF X(1478))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 - 2 cos B cos C
Barycentrics    (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Peter Yff, "Three concurrent congruent circles 'inscribed' in a triangle," manuscript, 1998; X(1479) is the point C' on page 5. See also X(495)-X(499).

X(1479) lies on these lines:
1,4    2,35    3,11    5,55    7,79    8,80    12,381    20,36    30,56    46,516    63,90    148,330    156,215    315,350    377,1125    382,999    387,1203    442,1001    495,546    528,1329    614,1370    1387,1388

X(1479) = reflection of X(I) in X(J) for these (I,J): (46,1210), (56,496)
X(1479) = X(1067)-Ceva conjugate of X(1)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.