HJB --- GMA --- UFF


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(350)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1447) lies on these lines:
2,7    25,273    36,1111    56,85    75,183    77,614    86,1431    87,269    105,927    230,1086    239,385    241,292    261,552    320,325    350,1281    459,1119    664,1319    673,910    1402,1441

X(1447) = X(I)-cross conjugate of X(J) for these (I,J): (238,239), (1284,1429)
X(1447) = cevapoint of X(I) and X(J) for these (I,J): (238,1429), (241,1463)
X(1447) = crossdifference of any two points on line X(663)X(1334)
X(1447) = X(7)-Hirst inverse of X(57)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense

free counter