HJB --- GMA --- UFF


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(313)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1441) lies on these lines:
2,92    7,8    10,307    12,313    19,379    21,286    34,964    57,1150    86,664    95,404    226,306    253,318    269,996    274,961    287,651    305,561    443,1119    1074,1111    1402,1447

X(1441) = isogonal conjugate of X(2194)
X(1441) = isotomic conjugate of X(21)
X(1441) = X(I)-Ceva conjugate of X(J) for these (I,J): (75,307), (85,226), (349,321), (664,693)
X(1441) = X(I)-cross conjugate of X(J) for these (I,J): (10,321), (12,226), (226,1446), (442,2), (121,76), (1214,1231)
X(1441) = cevapoint of X(I) and X(J) for these (I,J): (10,226), (65,1214)
X(1441) = crosspoint of X(75) and X(264)
X(1441) = crosssum of X(31) and X(184)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense

free counter