## X(1435) (X(278)-BETH CONJUGATE OF X(278))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (1 - cos A)u(a,b,c), where u : v : w = X(278)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(1435) lies on these lines:
1,951    19,57    25,34    27,1088    33,354    48,223    48,223    108,1477    154,1456    244,1096    269,1396    608,1407    913,1461    1395,1416

X(1435) = X(I)-Ceva conjugate of X(J) for these (I,J): (1119,34), (1396,1407)
X(1435) = X(I)-cross conjugate of X(J) for these (I,J): (608,34), (1106,269), (1426,1119)
X(1435) = cevapoint of X(608) and X(1398)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.