## X(1331) (ORTHOCORRESPONDENT OF X(101))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2)/(b - c)
Barycentrics    af(a,b,c) : bf(b,c,a) : cf(c,a,b)

For the definition of orthocorrespondent, see the notes just before X(1992).

X(1331) lies on thes lines:
63,212    71,895    72,283    78,255    100,109    101,110    145,595    162,190    228,295    287,293    394,1260    677,1252    901,1293

X(1331) = X(I)-Ceva conjugate of X(J) for these (I,J): (190,101), (643,100)
X(1331) = X(I)-cross conjugate of X(J) for these (I,J): (521,283), (652,63), (1260,1252)
X(1331) = cevapoint of X(I) and X(J) for these (I,J): (3,1459), (72,521), (212,652)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.