Interactive Applet |
You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.
You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon _{}, select the center name from the list and, then, click on the vertices A, B and C successively.
Information from Kimberling's Encyclopedia of Triangle Centers |
Trilinears (π - A)/a : (π - B)/b : (π - C)/c
Barycentrics π - A : π - B : π - CX(1115) is the center of mass of a point-mass system obtained by placing at vertex A a mass equal to the magnitude of the exterior angle (that's π - A) at A, and cyclically for B and C. (Peter Scales, #5528, 5/22/02)
X(1115) lies on this line: 2,360
X(1115) = complement of X(360)