## X(1100) (COMPLEMENT OF X(319))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            2a + b + c : 2b + c + a : 2c + a + b       (M. Iliev, 5/13/07)
Barycentrics    a(2a + b + c) : b(2b + c + a) : c(2c + a + b)

X(1100) is the midpoint of the bicentric pair y : z : x and z : x : y, where x : y : z = X(37)

X(1100) lies on these lines:
1,6    2,319    36,1030    48,354    65,604    71,583    81,593    86,239    214,1015    284,942    517,572    519,594    536,894    820,836

X(1100) is the {X(1),X(6)}-harmonic conjugate of X(37).

X(1100) = isogonal conjugate of X(1255)
X(1100) = complement of X(319)
X(1100) = crosspoint of X(I) and X(J) for these (I,J): (1,81), (2,79)
X(1100) = crosssum of X(I) and X(J) for these (I,J): (1,37), (6,35), (559,1082)
X(1100) = crossdifference of any two points on line X(484)X(513)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.