## X(1043) (CEVAPOINT OF X(1) AND X(20))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            f(A,B,C) : f(B,C,A) : f(C,A,B),
where f(A,B,C) = 1/[(1 - cos A)(cos B + cos C)]
Barycentrics    g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

X(1043) lies on these lines:
1,75    8,21    20,64    27,306    29,33    58,519    72,190    81,145    99,103    200,341    220,346    239,1104    280,285    283,643    286,322

X(1043) = isogonal conjugate of X(1042)
X(1043) = anticomplement of X(1834)
X(1043) = X(314)-Ceva conjugate of X(333)
X(1043) = cevapoint of X(I) and X(J) for these (I,J): (1,20), (8,78), (200,346)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.