## X(942) (INVERSE-IN-INCIRCLE OF X(36))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            f(a,b,c) : f(b,c,a) : f(c,a,b),
where f(a,b,c) = 2abc + (b + c)(a - b + c)(a + b - c)
Trilinears                                     = 1 + cos B + cos C : 1 + cos C + cos A : 1 + cos A + cos B

Barycentrics    g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(942) lies on these lines:
1,3    2,72    4,7    5,226    6,169    8,443    10,141    11,113    28,60    30,553    34,222    37,579    42,1066    58,1104    63,405    78,474    212,582    238,1046    277,1002    279,955    284,1100    355,388    496,946    750,976    758,960    962,1058    1042,1064

X(942) = midpoint of X(1) and X(65)
X(942) = reflection of X(960) in X(1125)
X(942) = isogonal conjugate of X(943)
X(942) = inverse-in-incircle of X(36)
X(942) = complement of X(72)
X(942) = X(1)-Ceva conjugate of X(500)
X(942) = crosspoint of X(I) and X(J) for these (I,J): (1,79), (2,286), (7,81)
X(942) = crosssum of X(I) and X(J) for these (I,J): (1,35), (6,228), (37,55)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.