HJB --- GMA --- UFF


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where
                                    f(a,b,c) = p(a,b,c)y(a,b,c)/a, polynomials p and y as given below

Barycentrics    g(a,b,c) : g(b,c,a) : g(c,a,b), where
                                    g(a,b,c) = p(a,b,c)y(a,b,c), polynomials p and y as given below

In A History of Mathematics, Florian Cajori wrote, "H. C. Gossard of the University of Oklahoma showed in 1916 that the three Euler lines of the triangles formed by the Euler line and the sides, taken by twos, of a given triangle, form a triangle . . . perspective with the given triangle and having the same Euler line." Let ABC be the given triangle and A'B'C' the Gossard triangle - that is, the triangle perspective with the given triangle and having the same Euler line. The lines AA', BB', CC' concur in X(402), named the Gosssard perspector by John Conway (1998).

Actually, X(402) dates back to an article by Christopher Zeeman in Wiskundige Opgaven 8 (1899-1902) 305. For details, see Paul Yiu's Hyacinthos message #7536 and others with Gossard in the subject line. (In ETC, the change of name from Gossard Perspector to Zeeman-Gossard Perspector was made on Oct. 15, 2003.) Further details are given by Wilson Stothers in Hyacinthos #8383, Oct. 21, 2003.

Barycentrics for X(402) were received from Paul Yiu (2/20/99); the polynomials p and y referred to above are given as follows:   

p(a,b,c) = 2a4 - a2b2 - a2c2 - (b2 - c2)2

y(a,b,c) = a8 - a6(b2 + c2) + a4(2b2 - c2)(2c2 - b2) + [(b2 - c2)2][3a2(b2 + c2) - b4 - c4 - 3b2c2]

X(402) lies on this line: 2,3

X(402) = complement of X(1650)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense

free counter