## X(388) (INTERSECTION OF LINES X(1)X(4) and X(7)X(8))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[a2 + (b + c)2]/(b + c - a)
= 1 + cos B cos C : 1 + cos C cos A : 1 + cos A cos B
Barycentrics    g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = [a2 + (b + c)2]/(b + c - a)

X(388) lies on these lines:
1,4    2,12    3,495    5,999    7,8    10,57    11,153    20,55    29,1037    35,376    36,498    79,1000    108,406    171,603    201,984    329,960    354,938    355,942    381,496    442,956    452,1001    612,1038    750,1106    1059,1067

X(388) is the {X(7),X(8)}-harmonic conjugate of X(65).

X(388) = isogonal conjugate of X(1036)
X(388) = anticomplement of X(958)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.