## X(308) (ISOTOMIC CONJUGATE OF X(39))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           b3c3/(b2 + c2) : c3a3/(c2 + a2) : a3b3/(a2 + b2)
= csc2A csc(A + ω) : csc2B csc(B + ω) : csc2C csc(C + ω)
= [csc(A - ω)]/(b2 + c2) : [csc(B - ω)]/(c2 + a2) : [csc(C - ω)]/(a2 + b2)

Barycentrics    (b2c2)/(b2 + c2) : (c2a2)/(c2 + a2) : (a2b2)/(a2 + b2)
= csc A csc(A + ω) : csc B csc(B + ω) : csc C csc(C + ω)

X(308) lies on these lines: 2,702    6,76    25,183    42,313    69,263    111,689    141,670    251,385    290,311

X(308) = isogonal conjugate of X(3051)
X(308) = isotomic conjugate of X(39)
X(308) = cevapoint of X(2) and X(76)
X(308) = X(I)-cross conjugate of X(J) for these (I,J): (2,83), (385,290)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.