X(306) (ISOTOMIC CONJUGATE OF X(27))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           (b2c2)(b + c)cos A : (c2a2)(c + a)cos B : (a2b2)(a + b)cos C
Barycentrics    bc(b + c)cos A : ca(c + a)cos B : ab(a + b)cos C

X(306) lies on these lines:
1,2    27,1043    63,69    72,440    92,264    209,518    226,321    253,329    287,293    304,305    319,333

X(306) = isogonal conjugate of X(1474)
X(306) = isotomic conjugate of X(27)
X(306) = complement of X(3187)
X(306) = X(I)-Ceva conjugate of X(J) for these (I,J): (69,72), (312,321), (313,10)
X(306) = X(I)-cross conjugate of X(J) for these (I,J): (71,10), (72,307), (440,2)
X(306) = crosspoint of X(I) and X(J) for these (I,J): (69,304), (312,345)
X(306) = crosssum of X(604) and X(608)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.