## X(299) (ISOTOMIC CONJUGATE OF 2ND ISOGONIC CENTER)

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           csc2A sin(A - π/3) : csc2B sin(B - π/3) : csc2C sin(C - π/3)
Barycentrics    csc A sin(A - π/3) : csc B sin(B - π/3) : csc C sin(C - π/3)

X(299) lies on these lines:
2,6    3,616    5,633    13,76    14,533    16,532    17,635    30,617    75,554    99,530    140,627    264,473    316,531    317,472    319,559    340,471    381,621    383,511

X(299) = midpoint of X(617) and X(622)
X(299) = reflection of X(I) in X(J) for these (I,J): (14,624), (16,619), (298,325), (385,396)
X(299) = isotomic conjugate of X(14)
X(299) = complement of X(3181)
X(299) = anticomplement of X(395)
X(299) = X(301)-Ceva conjugate of X(302)
X(299) = X(16)-cross conjugate of X(471)
X(299) = X(2)-Hirst inverse of X(298)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.