## X(281) (X(37)-CROSS CONJUGATE OF X(9))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           sec A cot A/2 : sec B cot B/2 : sec C cot C/2
= csc A + 2 csc 2A : csc B + 2 csc 2B : csc C + 2 csc 2C
= (1 + sec A)/a : (1 + sec B)/b : (1 + sec C)/c

Barycentrics    tan A cot A/2 : tan B cot B/2 : tan C cot C/2
= 1 + sec A : 1 + sec B : 1 + sec C

X(281) lies on these lines:
1,282    2,92    4,9    7,653    8,29    28,958    33,200    37,158    45,53    48,944    100,1013    189,222    196,226    220,594    240,984    264,344    268,1012    318,346    380,950    451,1068    515,610    612,1096

X(281) = isogonal conjugate of X(222)
X(281) = isotomic conjugate of X(348)
X(281) = complement of X(347)
X(281) = X(I)-Ceva conjugate of X(J) for these (I,J): (29,33), (92,4)
X(281) = X(I)-cross conjugate of X(J) for these (I,J): (33,4), (37,9), (55,8)
X(281) = crosspoint of X(I) and X(J) for these (I,J): (2,280), (92,318)
X(281) = crosssum of X(I) and X(J) for these (I,J): (6,221), (48,603), (73,1409), (652,1364)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.