## X(274) (ISOGONAL CONJUGATE OF X(213))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           b2c2/(b + c) : c2a2/(c + a) : a2b2/(a + b)
= [a csc(A - ω)]/(b + c) : [b csc(B - ω)]/(c + a) :[c csc(C - ω)]/(a + b)

Barycentrics    bc/(b + c) : ca/(c + a) : ab/(a + b)

X(274) lies on these lines:
1,75    2,39    7,959    10,291    21,99    28,242    57,85    58,870    69,443    81,239    88,799    110,767    183,474    213,894    264,475    278,331    315,377    325,442    961,1014

X(274) = isogonal conjugate of X(213)
X(274) = isotomic conjugate of X(37)
X(274) = complement of X(1655)
X(274) = X(310)-Ceva conjugate of X(314)
X(274) = cevapoint of X(I) and X(J) for these (I,J): (2,75), (85,348), (86,333)
X(274) = X(I)-cross conjugate of X(J) for these (I,J): (2,86), (75,310), (81,286), (333,314)
X(274) = crossdifference of any two points on line X(669)X(798)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.