## X(264) (ISOTOMIC CONJUGATE OF CIRCUMCENTER)

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           csc A csc 2A : csc B csc 2B : csc C csc 2C
= sec A csc2A : sec B csc2B : sec C csc2C
= tan A csc(A - ω) : tan B csc(B - ω) : tan C csc(C - ω)

Barycentrics    csc 2A : csc 2B : csc 2C

X(264) lies on these lines:
2,216    3,95    4,69    5,1093    6,287    25,183    33,350    53,141    75,225    85,309    92,306    99,378    274,475    281,344    298,472    299,473    300,302    301,303    305,325    339,381    379,823    401,577

X(264) = isogonal conjugate of X(184)
X(264) = isotomic conjugate of X(3)
X(264) = complement of X(3164)
X(264) = anticomplement of X(216)
X(264) = X(276)-Ceva conjugate of X(2)
X(264) = cevapoint of X(I) and X(J) for these (I,J): (2,4), (5,324), (6,157), (92,318), (273,342), (338,523), (491,492)

X(264) = X(I)-cross conjugate of X(J) for these (I,J): (2,76), (5,2), (30,94), (92,331), (427,4), (442,321)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.