## X(255) (ISOGONAL CONJUGATE OF X(158))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           cos2A : cos2B : cos2C
= 1 + cos 2A : 1 + cos 2B : 1 + cos 2C

Barycentrics    sin A cos2A : sin B cos2B : sin C cos2C

X(255) lies on these lines: 1,21    3,73    35,991    36,1106    40,109    48,563    55,601    56,602    57,580    91,1109    92,1087    158,775    162,1099    165,1103    200,271    201,1060    219,268    293,304    326,1102    411,651    498,750    499,748

X(255) = isogonal conjugate of X(158)
X(255) = X(I)-Ceva conjugate of X(J) for these (I,J): (63,48), (283,3)
X(255) = crosspoint of X(63) and X(326)
X(255) = crosssum of X(I) and X(J) for these (I,J): (1,290), (4,1068), (19,1096)
X(255) = X(I)-aleph conjugate of X(J) for these (I,J): (775,255), (1105,158)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.