## X(232) (X(2)-CEVA CONJUGATE OF X(132))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           tan A cos(A + ω) : tan B cos(B + ω) : tan C cos(C + ω)
Barycentrics    sin A tan A cos(A + ω) : sin B tan B cos(B + ω) : sin C tan C cos(C + ω)

X(232) lies on these lines:
2,216    4,39    6,25    19,444    22,577    23,250    24,32    53,427    112,186    115,403    217,389    230,231    297,325    378,574    385,648    459,800

X(232) = isogonal conjugate of X(287)
X(232) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,132), (297,511)
X(232) = X(237)-cross conjugate of X(511)
X(232) = crosssum of X(2) and X(401)
X(232) = crossdifference of any two points on line X(3)X(525)
X(232) = orthojoin of X(132)
X(232) = X(6)-Hirst inverse of X(25)
X(232) = X(281)-beth conjugate of X(232)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.