## X(223) (X(2)-CEVA CONJUGATE OF X(57))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (tan A/2)(cos B + cos C - cos A - 1)
Barycentrics    (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(223) lies on these lines:
1,4    2,77    3,1035    6,57    9,1073    40,221    56,937    63,651    108,204    109,165    312,664    329,347    380,608    580,603    936,1038

X(223) = isogonal conjugate of X(282)
X(223) = complement of X(189)
X(223) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,57), (77,1), (342,208), (347,40)
X(223) = cevapoint of X(198) and X(221)
X(223) = X(I)-cross conjugate of X(J) for these (I,J): (198,40), (227,347)
X(223) = crosspoint of X(2) and X(329)
X(223) = crosssum of X(6) and X(1436)

X(223) = X(I)-aleph conjugate of X(J) for these (I,J):
(63,1079), (77,223), (81,580), (174,46), (651,109)

X(223) = X(I)-beth conjugate of X(J) for these (I,J):
(2,278), (100,200), (162,204), (329,329), (651,223), (662,63)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.