## X(210) (X(10)-CEVA CONJUGATE OF X(37))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           (b + c)(b + c - a) : (c + a)(c + a - b) : (a + b)(a + b - c)
Barycentrics    a(b + c)(b + c - a) : b(c + a)(c + a - b) : c(a + b)(a + b - c)

X(210) lies on these lines:
2,354    6,612    8,312    9,55    10,12    31,44    33,220    37,42    38,899    43,984    45,968    51,374    56,936    63,1004    78,958    165,971    201,227    213,762    381,517    392,519    430,594    869,1107    956,997    976,1104

X(210) = X(2)-of-extouch triangle, so that X(210)X(1158) = Euler line of the extouch triangle

X(210) = reflection of X(I) in X(J) for these (I,J): (51,375), (354,2)
X(210) = isogonal conjugate of X(1014)
X(210) = X(10)-Ceva conjugate of X(37)
X(210) = crosspoint of X(8) and X(9)
X(210) = crosssum of X(I) and X(J) for these (I,J): (56,57), (58,1412)
X(210) = crossdifference of any two points on line X(1019)X(1429)
X(210) = X(I)-beth conjugate of X(J) for these (I,J): (200,210), (210,42)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.