## X(194) (X(6)-CEVA CONJUGATE OF X(2))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           bc[a2b2 + a2c2 - b2c2] : ca[b2c2 + b2a2 - c2a2] : ab[c2a2 + c2b2 - a2b2]
Barycentrics    a2b2 + a2c2 - b2c2 : b2c2 + b2a2 - c2a2 : c2a2 + c2b2 - a2b2
Barycentrics    cot2A - csc2A cos 2ω : cot2B - csc2B cos 2ω : cot2C - csc2C cos 2ω       (M. Iliev, 5/13/07)

X(194) lies on these lines:
1,87    2,39    3,385    4,147    6,384    8,730    20,185    32,99    63,239    69,695    75,1107    257,986    315,736

X(194) is the {X(39),X(76)}-harmonic conjugate of X(2).

X(194) = reflection of X(76) in X(39)
X(194) = isogonal conjugate of X(3224)
X(194) = isotomic conjugate of X(2998)
X(194) = anticomplement of X(76)
X(194) = anticomplementary conjugate of X(315)
X(194) = eigencenter of cevian triangle of X(6)
X(194) = eigencenter of anticevian triangle of X(2)

X(194) = X(6)-Ceva conjugate of X(2)
X(194) = X(3)-Hirst inverse of X(385)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.