## X(142) (COMPLEMENT OF MITTENPUNKT)

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           b + c - [(b - c)2]/a : c + a - [(c - a)2]/b : a + b - [(a - b)2]/c
Barycentrics    ab + ac - (b - c)2 : bc + ba - (c - a)2 : ca + cb - (a - b)2

X(142) = X(9)-of- medial triangle
X(142) = centroid of the set {X(1), X(4), X(7), X(40)}

X(142) lies on these lines: 1,277    2,7    3,516    5,971    10,141    37,1086    86,284    116,119    214,528    269,948    377,950    474,954

X(142) is the {X(2),X(7)}-harmonic conjugate of X(9).

X(142) = midpoint of X(7) and X(9)
X(142) = reflection of X(1001) in X(1125)
X(142) = isogonal conjugate of X(1174)
X(142) = complement of X(9)
X(142) = X(100)-Ceva conjugate of X(514)
X(142) = crosspoint of X(2) and X(85)
X(142) = crosssum of X(6) and X(41)
X(142) = X(190)-beth conjugate of X(142)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.