## X(103) (ANTIPODE OF X(101))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: tc.zip (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           a/[(a - b) cot C + (a - c) cot B] : b/[(b - c) cot A + (b - a) cot C] : c/[(c - a) cot B + (c - b) cot A]
Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2/[(a - b) cot C + (a - c) cot B]

X(103) = circumcircle-antipode of X(101)
X(103) = Ψ(X(101), X(3))

X(103) lies on these lines:
1,934    2,118    3,101    4,116    20,150    27,107    33,57    55,109    58,112    63,100    99,1043    102,928    295,813    376,544    515,929    516,927    572,825    672,919    910,971

X(103) = midpoint of X(20) and X(150)
X(103) = reflection of X(I) in X(J) for these (I,J): (4,116), (101,3), (152,118)
X(103) = isogonal conjugate of X(516)
X(103) = complement of X(152)
X(103) = anticomplement of X(118)
X(103) = X(21)-beth conjugate of X(934)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense