## X(63) (ISOGONAL CONJUGATE OF X(19))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           cot A : cot B : cot C
= b2 + c2 - a2 : c2 + a2 - b2 : a2 + b2 - c2

Barycentrics    cos A : cos B : cos C

X(63) lies on these lines:
1,21    2,7    3,72    8,20    10,46    19,27    33,1013    36,997    37,940    48,326    55,518    56,960    65,958    69,71    77,219    91,921    100,103    162,204    169,379    171,612    190,312    194,239    201,603    210,1004    212,1040    213,980    220,241    223,651    238,614    240,1096    244,748    304,1102    318,412    354,1001    392,999    404,936    405,942    452,938    484,535    517,956    544,1018    561,799    654,918    750,756

X(63) is the {X(9),X(57)}-harmonic conjugate of X(2).

X(63) = reflection of X(I) in X(J) for these (I,J): (1,993), (1478,10)
X(63) = isogonal conjugate of X(19)
X(63) = isotomic conjugate of X(92)
X(63) = anticomplement of X(226)
X(63) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,224), (69,78), (75,1), (304,326), (333,2), (348,77)
X(63) = cevapoint of X(I) and X(J) for these (I,J): (3,219), (9,40), (48,255), (71,72)
X(63) = X(I)-cross conjugate of X(J) for these (I,J): (3,77), (9,271), (48,1), (71,3), (72,69), (219,78), (255,326)
X(63) = crosspoint of X(I) and X(J) for these (I,J): (69,348), (75,304)
X(63) = crosssum of X(25) and X(607)
X(63) = crossdifference of any two points on line X(661)X(663)

X(63) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,1), (75,63), (92,920), (99,662), (174,978), (190,100), (333,411), (366,43), (514,1052), (556,40), (648,162), (664,651), (668,190), (670,799), (671,897), (903,88)

X(63) = X(I)-beth conjugate of X(J) for these (I,J):
(63,222), (190,63), (333,57), (345,345), (643,63), (645,312), (662,223)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.