## X(46) (X(4)-CEVA CONJUGATE OF X(1))

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           cos B + cos C - cos A : cos C + cos A - cos B : cos A + cos B - cos C
Barycentrics    a(cos B + cos C - cos A) : b(cos C + cos A - cos B) : c(cos A + cos B - cos C)

X(46) lies on these lines:
1,3    4,90    9,79    10,63    19,579    34,47    43,851    58,998    78,758    80,84    100,224    158,412    169,672    200,1004    218,910    222,227    225,254    226,498    269,1103    404,997    474,960    499,946    595,614    750,975    978,1054

X(46) is the {X(3),X(65)}-harmonic conjugate of X(1).

X(46) = reflection of X(I) in X(J) for these (I,J): (1,56), (1479,1210)
X(46) = isogonal conjugate of X(90)
X(46) = inverse-in-Bevan-circle of X(36)
X(46) = X(4)-Ceva conjugate of X(1)
X(46) = crosssum of X(3) and X(1069)
X(46) = X(I)-aleph conjugate of X(J) for these (I,J): (4,46), (174,223), (188,1079), (366,610), (653,1020)
X(46) = X(100)-beth conjugate of X(46)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.