## X(30) (EULER INFINITY POINT)

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           cos A - 2 cos B cos C : cos B - 2 cos C cos A : cos C - 2 cos A cos B
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[2a4 - (b2 - c2)2 - a2(b2 + c2)]

Barycentrics    g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 2a4 - (b2 - c2)2 - a2(b2 + c2)

X(30) is the point of intersection of the Euler line and the line at infinity. Thus, each of the 41 lines listed below is parallel to the Euler line.

X(30) = orthopoint of X(523)
X(30) = isogonal conjugate of X(74)
X(30) = isotomic conjugate of X(1494)
X(30) = anticomplementary conjugate of X(146)
X(30) = complementary conjugate of X(113)
X(30) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,113), (265,5), (476,523)
X(30) = cevapoint of X(3) and X(399)
X(30) = crosspoint of X(I) and X(J) for these (I,J): (13,14), (94,264)
X(30) = crosssum of X(I) and X(J) for these (I,J): (15,16), (50,184)
X(30) = crossdifference of any two points on line X(6)X(647)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.