## X(29) (CEVAPOINT OF INCENTER AND ORTHOCENTER)

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           (sec A)/(cos B + cos C) : (sec B)/(cos C + cos A) : (sec C)/(cos A + cos B)
Barycentrics    (tan A)/(cos B + cos C) : (tan B)/(cos C + cos A) : (tan C)/(cos A + cos B)

X(29) lies on these lines:
1,92    2,3    8,219    10,1794    33,78    34,77    58,162    65,296    81,189    102,107    112,1311    226,951    242,257    270,283    284,950    314,1039    388,1037    392,1871    497,1036    515,947    648,1121    662,1800    758,1844    894,1868    960,1859    1056,1059    1057,1058    1125,1838    1220,1474    1737,1780    1807,1897    1842,1848

X(29) is the {X(3),X(4)}-harmonic conjugate of X(412).

X(29) = isogonal conjugate of X(73)
X(29) = isotomic conjugate of X(307)
X(29) = complement of X(3153)
X(29) = X(286)-Ceva conjugate of X(27)
X(29) = cevapoint of X(I) and X(J) for these (I,J): (1,4), (33,281)
X(29) = X(I)-cross conjugate of X(J) for these (I,J): (1,21), (284,333), (497,314)
X(29) = crosssum of X(I) and X(J) for these (I,J): (1,1047), (228,1409)
X(29) = crossdifference of any two points on line X(647)X(822)
X(29) = X(4)-Hirst inverse of X(415)
X(29) = X(I)-beth conjugate of X(J) for these (I,J): (29,28), (811,29)

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.