## X(2) (CENTROID)

 Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon , select the center name from the list and, then, click on the vertices A, B and C successively.

 The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: tc.zip (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..

 Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears           1/a : 1/b : 1/c
= bc : ca : ab
= csc A : csc B : csc C
= cos A + cos B cos C : cos B + cos C cos A : cos C + cos A cos B
= sec A + sec B sec C : sec B + sec C sec A : sec C + sec A sec B
= cos A + cos(B - C) : cos B + cos(C - A) : cos C + cos(A - B)
= cos B cos C - cos(B - C) : cos C cos A - cos(C - A) : cos A cos B - cos(A - B)

Barycentrics    1 : 1 : 1

X(2) is the point of concurrence of the medians of ABC, situated 1/3 of the distance from each vertex to the midpoint of the opposite side. More generally, if L is any line in the plane of ABC, then the distance from X(2) to L is the average of the distances from A, B, C to L. An idealized triangular sheet balances atop a pin head located at X(2) and also balances atop any knife-edge that passes through X(2). The triangles BXC, CXA, AXB have equal areas if and only if X = X(2).

X(2) is the centroid of the set of 3 vertices, the centroid of the triangle including its interior, but not the centroid of the triangle without its interior; that centroid is X(10).

X(2) is the identity of the group of triangle centers under "barycentric multiplication" defined by

(x : y : z)*(u : v : w) = xu : yv : zw.

X(2) is the {X(3),X(5)}-harmonic conjugate of X(4).

X(2) = midpoint of X(I) and X(J) for these (I,J): (3,381), (4,376), (210,354)
X(2) = reflection of X(I) in X(J) for these (I,J): (1,551), (3,549), (4,381), (5,547), (6,597), (20,376), (69,599), (148,671), (376,3), (381,5), (549,140), (551,1125), (599,141), (671,115), (903,1086), (1121,1146)

X(2) = isogonal conjugate of X(6)
X(2) = isotomic conjugate of X(2)
X(2) = cyclocevian conjugate of X(4)
X(2) = inverse-in-circumcircle of X(23)
X(2) = inverse-in-nine-point-circle of X(858)
X(2) = inverse-in-Brocard-circle of X(110)
X(2) = complement of X(2)
X(2) = anticomplement of X(2)
X(2) = anticomplementary conjugate of X(69)
X(2) = complementary conjugate of X(141)

X(2) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,192), (4,193), (6,194), (7,145), (8,144), (30,1494), (69,20), (75,8), (76,69), (83,6), (85,7), (86,1), (87,330), (95,3), (98,385), (99,523), (190,514), (264,4), (274,75), (276,264), (287,401), (290,511), (308,76), (312,329), (325,147), (333,63), (348,347), (491,487), (492,488), (523,148), (626,1502)

X(2) = cevapoint of X(I) and X(J) for these (I,J):
(1,9), (3,6), (5,216), (10,37), (32,206), (39,141), (44,214), (57,223), (114,230), (115,523), (128,231), (132,232), (140,233), (188,236)

X(2) = X(I)-cross conjugate of X(J) for these (I,J):
(1,7), (3,69), (4,253), (5,264), (6,4), (9,8), (10,75), (32,66), (37,1), (39,6), (44,80), (57,189), (75,330), (114,325), (140,95), (141,76), (142,85), (178,508), (187,67), (206,315), (214,320), (216,3), (223,329), (226,92), (230,98), (233,5), (281,280), (395,14), (396,13), (440,306), (511,290), (514,190), (523,99)

X(2) = crosspoint of X(I) and X(J) for these (I,J):
(1,87), (75,85), (76,264), (83,308), (86,274), (95,276)

X(2) = crosssum of X(I) and X(J) for these (I,J):
(1,43), (2,194), (31,41), (32,184), (42,213), (51,217), (125,826), (649,1015), (688,1084), (902,1017), (1400,1409)

X(2) = crossdifference of any two points on line X(187)X(237)

X(2) = X(I)-Hirst inverse of X(J) for these (I,J):
(1,239), (3,401), (4,297), (6,385), (21,448), (27,447), (69,325), (75,350), (98,287), (115,148), (193,230), (291,335), (298,299), (449,452)

X(2) = X(3)-line conjugate of X(237) = X(316)-line conjugate of X(187)

X(2) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,1045), (2,191), (86,2), (174,1046), (333,20), (366,846)

X(2) = X(I)-beth conjugate of X(J) for these (I,J):
(2,57), (21,995) (190,2), (312,312), (333,2), (643,55), (645,2), (646,2), (648,196), (662,222)

X(2) is the unique point X (as a function of a,b,c) for which the vector-sum XA + XB + XC is the zero vector.

This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense