Angiotensin I-converting enzyme insertion/deletion polymorphism and adrenergic response to exercise in hypertensive patients

Jorge E Jalil1, Samuel Córdova1, María Paz Ocaranza1, Erwin Schumacher1, Sandra Braun1, Gastón Chamorro1, Carlos Fardella2, Sergio Lavandero3

1 Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile
2 Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile
3 Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile

Source of support: Partially supported by a grant from FONDECYT (1961065), by an Interchange Research Program from Conicyt-INSERM (C99S01), and by grant no. PG-1/98 from the School of Medicine, Pontificia Universidad Católica de Chile.

Summary

Background: The insertion/deletion ACE polymorphism (ACE I/D) regulates different levels of circulating and tissue ACE activities, which may induce diverse adrenergic responses to physiological stimuli. The aim of this study was to evaluate the influence of the ACE I/D polymorphism on the adrenergic response to isotonic exercise in middle-aged hypertensive patients.

Material/Methods: Submaximal exercise (on a treadmill, using the Naughton protocol at 75% of maximal heart rate) was performed in 34 patients homozygous for the ACE I/D polymorphism (ACE II and ACE DD) with untreated essential hypertension (II = 19, DD = 15). Plasma venous adrenaline and noradrenaline were measured at rest and at submaximal exercise.

Results: Plasma ACE activity was significantly higher in the hypertensive patients carrying the ACE DD genotype compared with the ACE II group. Left atrium size, as well as LV dimensions, mass, and function, were similar in both groups. Total exercise time, baseline and 75% maximal heart rate (MHR) and blood pressure were similar in both groups. Baseline plasma adrenaline and noradrenaline were measured at rest and at submaximal exercise.

Conclusions: The presence of the D allele on the ACE gene in middle-aged hypertensive patients determines higher circulating ACE activity but not increased sympathetic activity in response to submaximal exercise.

key words: angiotensin converting enzyme polymorphism • angiotensin • catecholamines • adrenergic system • hypertension • exercise
BACKGROUND

The angiotensin I-converting enzyme (ACE) (kininase II, EC 3.4.15.1) converts the decapeptide angiotensin I to the vasoactive octapeptide angiotensin II (Ang II), degrades bradykinin, and inactivates angiotensin-(1-7) [1]. In this way, the activity of this enzyme may control the circulating and tissue levels of Ang II and contribute to the regulation of vascular tone, and may also have effects on cardiac mass and structure.

In Caucasian populations, as well as in Chilean normotensive individuals, an insertion/deletion (I/D) polymorphism of the ACE gene determines almost half the variance of circulating ACE activity [2–4]. Higher levels of circulating ACE are associated with the presence of the deletion allele, and may be implicated in increased cardiovascular and renal morbidity [3–7]. In humans, this polymorphism could be a marker for a linkage disequilibrium, which presumably – though the sequence variant is unidentified – modulates the expression of the ACE gene in such a way that the deletion allele is associated with higher ACE activity in plasma, T lymphocytes and the heart [3,8,9]. This polymorphism, associated with differing levels of ACE, is also present in hypertensive patients [10,11], but it is not clear whether there is an association with hypertension [12] or with the development of left ventricular hypertrophy (LVH) in these patients. In one study [13], hypertensive patients with the ACE DD genotype were found to be less likely to show regression of LVH when treated with ACE inhibitors than were patients with other ACE genotypes.

On the other hand, there are also synergistic interactions between the adrenergic and the renin-angiotensin systems. This is particularly relevant in hypertension, where the activation of one system may stimulate the activity of the other. The I/D ACE polymorphism regulates different levels of circulating and tissue ACE activities, and this may induce diverse adrenergic responses to typical physiological stimuli. This aspect of the issue has not been addressed in hypertensive patients to date.

For the purposes of the present study we evaluated the influence of ACE polymorphism on the adrenergic response to isometric exercise in middle-aged hypertensive patients. Submaximal exercise (on a treadmill, using the Naughton protocol at 75% of maximal heart rate) was performed by patients with untreated essential hypertension.

MATERIAL AND METHODS

This prospective study was approved by the Research Commission of the Hospital Clínico, Pontificia Universidad Católica de Chile. The participants were consecutive hypertensive subjects (blood pressure >140/90 mm Hg, measured twice with a mercury manometer on two different days in sitting position after at least 5 minutes of sitting rest without ingestion of caffeine or food for 30 minutes prior to measurement), homozygous for the II or DD ACE polymorphism, who had not received antihypertensive drugs for at least 2 weeks before being enrolled in our study. Blood pressure (BP) was recorded as the mean of three measurements in sitting position, taken every 1 min.

These hypertensive patients, in stages I or II, ranged in age from 43 to 60 years. All were native-born Chileans, of middle socioeconomic status (Graffar scale 2 to 4), non-obese (body mass index (BMI) < 28 kg/m²) and non-diabetic. These criteria were selected to control for sociogenetic influences and for the effects of body mass and diabetes on blood pressure and LV mass [14]. Patients with a clinical history of angina, myocardial infarction, stroke or secondary hypertension were excluded. In 21 of 34 patients the diagnosis of hypertension was recent (< 1 month). In 13 patients the duration of hypertension was 71±21 months. Demographic characteristics and laboratory results pertaining to these patients are shown in Table 1.

Table 1. Clinical characteristics of the patients with different ACE genotypes.

<table>
<thead>
<tr>
<th></th>
<th>II group (n=19)</th>
<th>DD group (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>54±6</td>
<td>53±9*</td>
</tr>
<tr>
<td>Gender (Females/Men)</td>
<td>15/4</td>
<td>8/7</td>
</tr>
<tr>
<td>Body Weight</td>
<td>67±10</td>
<td>69±10*</td>
</tr>
<tr>
<td>Body Mass Index (Kg/m²)</td>
<td>26±3</td>
<td>26±2*</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>0.9±0.1</td>
<td>0.9±0.1*</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>41±3</td>
<td>42±3*</td>
</tr>
<tr>
<td>Sodium (mEq)</td>
<td>143±2</td>
<td>142±2*</td>
</tr>
<tr>
<td>Potassium (mEq)</td>
<td>4.3±0.4</td>
<td>4.2±0.3*</td>
</tr>
<tr>
<td>Plasma ACE activity (U/mL)</td>
<td>18±4</td>
<td>31±8*</td>
</tr>
</tbody>
</table>

Mean±standard deviation; * p<0.001 vs the II ACE genotype group; NS – not significant vs, the II group

The DNA was amplified by PCR [15] in a Techne thermal cycler (Cambridge, UK). The reaction mixture contained PCR buffer, 1.5 mM MgCl₂, 200 µM dNTPs, 1 U Taq polymerase (Gibco BRL, NY, USA). The DNA was precipitated by adding ethanol; the pellet was washed and resuspended in 1 mL of DNAzol® (Gibco BRL, NY, USA). DNA sequencing was performed at the Instituto de Medicina Molecular, in Portugal, and at the Laboratorio de Biología Molecular, in the Hospital Clínico, Pontificia Universidad Católica de Chile.

The DNA was amplified by PCR [15] in a Techne thermal cycler (Cambridge, UK). The reaction mixture contained PCR buffer, 1.5 mM MgCl₂, 200 µM dNTPs, 1 U Taq polymerase (Gibco BRL, NY, USA). The DNA was precipitated by adding ethanol; the pellet was dried, resuspended in 8 mM NaOH and incubated at 50°C for 20 min [4].

The DNA was amplified by PCR [15] in a Techne thermal cycler (Cambridge, UK). The reaction mixture contained PCR buffer, 1.5 mM MgCl₂, 200 µM dNTPs, 1 U Taq polymerase (Gibco BRL, NY, USA). The DNA was precipitated by adding ethanol; the pellet was washed and resuspended in 1 mL of DNAzol® (Gibco BRL, NY, USA). DNA was precipitated by adding ethanol; the pellet was dried, resuspended in 8 mM NaOH and incubated at 50°C for 20 min [4].
In order to measure plasma ACE activity, another blood sample was obtained in a chilled heparinized tube (after overnight fasting). The sample was then centrifuged within 3 h at 4°C. Plasma was stored in liquid nitrogen and processed within 4 weeks. The method used was based on spectrophotometric determination of histidyl-L-leucine (HL) using Z-phenyl-histidyl-leucine (Bachem, USA) as ACE substrate [16–18]. Briefly, 50 µL of plasma was incubated for 20 min at 37°C. Then 100 µL of cold trichloracetic acid (10%) was added to stop the reaction. The samples were then centrifuged at 4°C, and the supernatants were neutralized by addition of NaOH and o-phthalaldehydehyde solution. The samples were again incubated at 37°C for 10 min and the reaction was stopped with 2 M HCl. Fluorescence was measured within 60 min in an Aminco–Bowman spectrofluorimeter (λ excitation = 365 nm, λ emission = 500 nm). The readings were interpolated in a calibration curve and the amount of HL formed during the incubation time was calculated. ACE activity was expressed as U/mL (1 U = nmol HL produced in 20 min in 0.05 mL). All determinations were performed in duplicate. With this method we have previously observed intra-assay and inter-assay coefficients of variation of 1% [19].

Echocardiographic measurements were obtained, at the same time as blood sampling, with a 3.5 MHz transducer operated by one echocardiographer using an Aloka SSD 875 instrument. The echocardiographic testing was blinded for the clinical condition and genotype of the patients. All measurements were performed according to the recommendations of the American Association of Echocardiography (ASE) [20], measuring 3–5 consecutive cardiac cycles. The following variables in the parasternal short axis were measured: interventricular septal thickness (IVS Th), and posterior wall thickness (PWT h), end diastolic (EDD) and end systolic dimension (ESD). With these variables, left ventricular (LV) mass and LV mass index were calculated according to the formula developed by Devereux and modified by the ASE [21].

Progressive isotonic exercise was performed on a treadmill according to a modified Naughton protocol. The exercise studies were performed in a blind fashion for the examiners. Exercise was stopped when 75% of the maximal heart rate appropriate for age and sex was reached [22,23]. Before the exercise test was started, blood samples were taken from a brachial vein from subjects in supine position after a resting period of 30 min, in order to determine the plasma concentrations of noradrenaline (NA) and adrenaline (A). Samples were taken again at the time 75% maximal heart rate was attained. Catecholamines were measured using a randoenzymatic technique (Biotrak Kit, Amersham Pharmacia Biotech, UK) [22,23].

Statistical analysis

The results achieved are presented as means ± SD. The unpaired t-test or non-parametric Mann-Whitney test were used, as well as 2 factor ANOVA (using genotype and rest/exercise condition as factors) and chi square tests. Linear regression analysis was also performed. A p value less than 0.05 was considered statistically significant.

Results

Thirty four homozygous hypertensive patients were consecutively evaluated (II = 19 and DD = 15). The clinical characteristics and laboratory results are shown on Table 1. Arterial blood pressure (systolic/diastolic) was 159±15/95±6 and 160±18/98±10 mmHg in the II and DD groups respectively (difference not significant), whereas plasma ACE activities were significantly higher in the hypertensive patients carrying the DD genotype when compared with the II group (Table 1).

No differences were observed between the two genotypes in LV dimensions (left atria, end systolic, end diastolic), LV mass and function (Table 2). When broken down by gender, both genotypes were similar in terms of LV mass.

The total exercise time, baseline as well as 75% maximal heart rate (MHR) and blood pressure were similar in both groups (Table 3). Baseline plasma adrenaline levels were

| Table 2. Cardiac dimensions, LV mass and systolic function in the ACE genotypes. |
|---------------------------------|-----------------|-----------------|
| | II group (n=19) | DD group (n=15) |
| Left atrial dimension (mm) | 36±4 | 36±4 |
| LV End diastolic dimension (mm) | 47±5 | 48±4 |
| LV End systolic dimension (mm) | 31±5 | 29±3 |
| Interventricular septum thickness (mm) | 10±2 | 10±2 |
| LV posterior wall thickness (mm) | 10±2 | 10±2 |
| LV Mass (g) | 165±43 | 181±49 |
| LV Mass index (g/m²) | 86±20 | 91±18 |
| LV Shortening fraction (%) | 34±11 | 39±4 |

| Table 3. Submaximal exercise responses in both ACE genotypes. |
|---------------------------------|-----------------|-----------------|
| | II group (n=19) | DD group (n=15) |
| Exercise time (sec) | 605±243 | 705±210 |
| Resting heart rate (bpm) | 79±10 | 83±16 |
| Heart rate at 75% MHR (bpm) | 127±5 | 127±5 |
| DBP at 75% MHR (mm Hg) | 94±10 | 98±11 |
| SBP at 75% MHR (mm Hg) | 170±19 | 173±19 |

| Mean±standard deviation; NS – not significant vs. the II group |
25±11 and 31±22 pg/mL in the II and DD patients, respectively (NS). These levels increased significantly \((p<0.05)\) in both groups by 300% at submaximal exercise, without differences between the 2 groups (Figure 1).

Baseline plasma NA levels were 336±181 and 334±125 pg/mL in the II and DD patients, respectively (NS). These levels increased significantly \((p<0.05)\) at submaximal exercise by 270 % in both genotypes without differences between groups (Figure 2).

No significant correlations were observed between LV dimensions, LV mass, plasma ACE or blood pressure with plasma catecholamines at rest or during exercise.

DISCUSSION

In the present study no effect of I/D ACE genotype was observed on the sympathetic response to submaximal exercise in hypertensive patients.

Experimental data from both animal models and human subjects suggest that activation of the renin-angiotensin system stimulates sympathetic activity. Ang II stimulates the release of NA from cardiac sympathetic nerves [24], enhances NA spillover during sympathetic activation (in conscious rabbits) [25], and increases NA release from atria by acting on the Ang subtype 1 receptors in the guinea pig isolated atria [26].

Ang II and sympathetic activity during exercise

The effect of the renin-angiotensin system on sympathetic activation induced by exercise has been assessed in several studies. In normal volunteers exercised at approximately 25 and 65% of their maximal \(O_2\) consumption, the ACE inhibitor enalapril did not attenuate the NA spillover response to exercise, leading to the conclusion that prejunctional Ang II receptors do not appear to facilitate NE release [30]. In another study, captopril during isometric handgrip exercise blunted the increase in mean arterial pressure, but not in systemic NA spillover [31].

In patients with hypertension or heart failure, however, adrenergic responses to exercise as assessed by plasma catecholamines are enhanced [22,32,33]. ACE inhibitors decrease the excessive adrenergic response to exercise in patients with hypertension [34] or with heart failure [23] as well as myocardial overflow of NA at peak exercise in patients with chronic heart failure [35].

These findings suggest that, in hypertensive or heart failure patients, but not in healthy persons, there is enhanced stimulation of the adrenergic response by the renin-angiotensin system.

These physiological observations led us to hypothesize that genetically increased ACE activity in hypertensive patients could stimulate higher sympathetic activity during exercise. There have been a few studies assessing the effect of the ACE I/D polymorphism on exercise, but ours is the first study to specifically address the effect of this polymorphism on the adrenergic response to exercise in hypertensive patients.

I/D ACE polymorphism and exercise

The development of LVH in young males with physical training has been shown to be strongly associated with ACE genotype and the presence of the D allele [36]. In
sedentary, obese hypertensive older men, ACE II and ID genotypes had lower systolic blood pressure after training than did DD individuals [37]. In postmenopausal women with different levels of habitual physical activity, ACE II genotype carriers had a higher VO\textsubscript{2} max and maximum heart rate than did the ACE DD or ID genotype groups. The ACE II genotype group also had a 3.3 mL·kg-1·min-1 higher VO\textsubscript{2} max (p<0.05) than the ACE ID genotype group. In the aforementioned study, maximal heart rate was significantly higher in the ACE II genotype individuals compared with the ACE ID and DD genotypes. The difference in VO\textsubscript{2} max among ACE genotype groups was entirely ascribable to differences in maximal arteriovenous O\textsubscript{2} difference. The ACE polymorphism accounted for 17\% of the variation in maximal a-vDO\textsubscript{2} in these women due to genotype-dependent differences in maximal a-vDO\textsubscript{2}; this was unrelated to maximal stroke volume and maximal cardiac output [38]. In these studies no assessment of the sympathetic responses to exercise has been reported.

Our results do not support the hypothesis of increased sympathetic activation during exercise or under stress in hypertensive ACE DD patients. One explanation is that, despite its association with a major difference in plasma ACE levels, the ACE I/D polymorphism does not modify the increases in Ang II, aldosterone or renin induced by Ang I infusion in normotensive subjects [39]. In this sense, the stimulation of sympathetic activity during exercise would be similar in any ACE I/D genotype. This finding could also explain the controversial issue as to why there is no effect of the ACE D allele on the development of LVH in hypertensive patients.

Conclusion

The presence of the D allele on the ACE gene in middle-aged hypertensive patients determines higher circulating ACE activity but not increased sympathetic activity to submaximal exercise.

Acknowledgements

We would like to thank Dr. Jean Baptiste Michel for introducing us to the technique for ACE measurements, Dr Francois Cambien and Mrs Odette Poirier for their help with the technique for determining human ACE polymorphism, Professor Chris Pogson for his critical reading of the manuscript, and Susy Cohen for her technical assistance.

References:

Index Copernicus
Global Scientific Information Systems
for Scientists by Scientists

www.IndexCopernicus.com

Index Copernicus integrates

IC Scientists
Effective search tool for collaborators worldwide. Provides easy global networking for scientists. C.V.’s and dossiers on selected scientists available. Increase your professional visibility.

IC Journal Master List
Scientific literature database, including abstracts, full text, and journal ranking. Instructions for authors available from selected journals.

IC Virtual Research Groups [VRG]
Web-based complete research environment which enables researchers to work on one project from distant locations. VRG provides:
- customizable and individually self-tailored electronic research protocols and data capture tools,
- statistical analysis and report creation tools,
- profiled information on literature, publications, grants and patents related to the research project,
- administration tools.

IC Patents
Provides information on patent registration process, patent offices and other legal issues. Provides links to companies that may want to license or purchase a patent.

IC Grant Awareness
Need grant assistance? Step-by-step information on how to apply for a grant. Provides a list of grant institutions and their requirements.

IC Lab & Clinical Trial Register
Provides list of on-going laboratory or clinical trials, including research summaries and calls for co-investigators.

IC Conferences
Effective search tool for worldwide medical conferences and local meetings.